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Abstract
A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic
permeability for a range of frequencies, due to its self-inductance and self-capacitance
components. In this paper, we discuss the band structure, S-parameters and effective
electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical
results, which show an exceptional convergence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

All materials in nature are composites, consisted from atoms
and molecules, which determine the electromagnetic properties
of a material [1]. Based on this idea a new class of artificial
materials, ‘metamaterials’, were developed whose subunits
are of a smaller size than the wavelength of incident wave.
Therefore, the wave is too myopic to see the individual
geometry of subunits and consequently metamaterials can be
characterized as homogeneous media, with effective electric
permittivity (εeff) and magnetic permeability (μeff). The
electromagnetic behaviour of metamaterials is governed by the
subunit geometry and therefore, media can be constructed with
novel electromagnetic properties, some of which are not seen
in nature. One of the most fascinating is negative refraction,
that can be realized when both the εeff and μeff of a medium
are negative, as Veselago first noted [2]:

n =
{

+√
εμ for ε > 0 and μ > 0

−√
εμ for ε < 0 and μ < 0.

(1)

There are various ways with which negative refraction can
be realized. Metamaterials with both ε and μ resonant are
most commonly called doubly negative metamaterials, since
they require two different resonant structures to be brought
together, in order to achieve negative refraction. The most
well-known doubly negative metamaterial arises from the
combination of a wire-mesh [3–5] and split-ring resonators [1],
which was firstly constructed and tested experimentally
for microwave frequencies by Smith et al [6]. Another
interesting property, apart from negative refraction, is that

metamaterials can be constructed with macroscopic magnetic
behaviour, although their subunits are made entirely from
conductors [1]. It is remarkable that the magnetic behaviour
of metamaterials holds for frequencies where the magnetic
response of conventional materials disappear (even for GHz
frequencies). The majority of metamaterial community has
focused on split-ring resonators, since they can be used with
less difficulty in combination with the wire-mesh metamaterial
and operate at higher frequencies, compared with Swiss rolls.
However, Swiss rolls have different and equally interesting
applications. Furthermore, by adding chiral inclusions in a
resonant medium, a negative refractive band can be obtained
for one wave polarization as described in [7, 8]. Therefore,
a chiral Swiss roll metamaterial can be constructed, that
achieves negative refraction with a continuous transition from
the negative to positive band, for one wave polarization. In
this paper, we investigate the behaviour of the simpler case of
non-chiral Swiss roll metamaterials, numerically and compare
it to analytical work [1] since, to the best of our knowledge,
there is no numerical investigation due to design complexity
and difficulties on modelling the structure.

Pendry et al [1] proposed that Swiss rolls and split-
ring resonators made from thin conducting sheets, have a
macroscopic magnetic behaviour for a magnetic field (H0)
applied along the rod. The magnetic field induces currents
on the circumference of the cylinder and consequently a
magnetization (i.e. electromotive force—emf) opposing the
applied magnetic field [1, 9]. Therefore, it macroscopically
appears that ‘magnetic’ monopoles are flowing up and down
the cylinders (i.e. the magnetic equivalent of conducting
wires). The capacitive and conductive elements of the structure
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(a) (b)

Figure 1. (a) A Swiss roll, where R is the outer radius, d the gap between the conducting sheets. (b) For magnetic fields along the Swiss roll,
the metamaterial has an effective resonant magnetic permeability (μz). Note that μz < 0 for ω0 < ω < ωmp.

create a resonant LC circuit that the induced currents are
subjected to and therefore a resonant μ that takes negative
values for a range of frequencies is achieved [1]. A Swiss
roll resonator is made from a thin conducting sheet wrapped
around a cylindrical mandrel in a spiral shape (figure 1). For a
metamaterial consisted from Swiss rolls in a square lattice, the
fields will obey:

D = εeffε0E − i
√

ε0μ0κH

B = μeffμ0H + i
√

ε0μ0κ
TE

(2)

where εeff and μeff are the effective electric permittivity and
magnetic permeability respectively, κ is the magnetoelectric
coupling term that takes into account the bianisotropic nature
of the structure. The currents induced on the spiral conducting
sheet, because of the applied magnetic field oscillating along
the Swiss roll, are dependent on radius R and the differential
capacitance across d . Therefore, the effective magnetic
permeability along the roll is plotted in figure 1(b) and given
by [1]:

μeff
z = 1 − (π R2/a2)ω2

ω2 − dc2
0

2π2 R3εd(N−1)
+ i2ρω

μ0 R(N−1)

= 1 − Fω2

ω2 − ω2
0 + i�ω

(3)

where ω is the frequency of the wave, F = π R2/a2 the filling
factor, � = 2ρ/[μ0 R(N−1)] accounts for the resistivity losses
of the conducting material, ρ is the resistance of the conducting
sheet per unit area and ω0 the resonance frequency, which is
given by [1]:

ω0 = c0

√
d

2π2 R3εd(N − 1)
=

√
1

2π2 R3μ0C(N − 1)2
(4)

where
C = εdε0

d(N − 1)
= εd

μ0c2
0d(N − 1)

is the capacitance of the system, εd the dielectric permittivity
of the material in the gap between the conducting sheets, which
we will assume to be vacuum (i.e. εd = 1). The μeff

z (1(b)) goes
to infinity at ω0 and to zero at ωmp (i.e. the ‘magnetic’ plasma

frequency), which is given by [1]:

ωmp = c0

√
d

(1 − F)2π2 R3ε(N − 1)

=
√

1

F2π2 R3μ0C(N − 1)2
= ω0√

1 − F
. (5)

In order to derive (3) we assumed that the conducting sheet
is infinitely thin and that the radius of the Swiss roll is much
larger than d (i.e. R � d).

The z-component of the electric permittivity can be found
by considering an oscillating Ez-field along the Swiss rolls. In
this case and for the long wavelength limit, the field would see
thick conducting wires and therefore, the electric permittivity
along the Swiss rolls (i.e. εeff

z ) obeys Drude’s model:

εeff
z = 1 − ω2

p

ω2
(6)

where ωp is the plasma frequency, which takes values much
higher than ω0 and ωmp (i.e. ωp � ω0 and ωp � ωmp),
since for conducting wires as R increases ωp increases as
well [10, 11]. Therefore, εz is negative for ω < ωp [3–5].
This means that for kx -propagation the band structure will not
be doubly degenerate, since the mode with (Ez, Hy) fields is
forbidden. Only the (Ey, Hz) mode will propagate.

Now, if we assume lateral electric or magnetic fields
(i.e. in the x–y plane) and neglect the resistivity losses of
the conducting sheet, then the lateral components of εeff and
μeff can be considered to be approximately constants [1]. The
magnetic lines cannot penetrate the rods, and are constrained
in the free space around the Swiss rolls, giving a spatially
non-uniform magnetic field, resulting to μeff

x and μeff
y to take

values [12–14]:

μeff
x = μeff

y �
√

1 − F

2
. (7)

Similarly, for the x- and y-components of the electric
permittivity:

εeff
x = εeff

y � 2√
1 − F

. (8)

Finally, due to the bianisotropic nature of the structure,
a resonant magnetoelectric coupling term (κ) has to be
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(a) (b)

Figure 2. The analytical prediction (red solid line), plotted with numerical results (dots) for a Swiss roll metamaterial with dimensions
N = 2, d = 0.1 mm, x = 0.05 mm, R = 2 mm and a = 5 mm. Note that the left part of both plots is the band structure for kx -propagation
and the right part for kz-propagation. The light line is plotted with a green dashed line. (a) For k → 0. Note that there is a stop band for
ω0 < ω < ωmp and kx -propagation, where μz < 0. (b) At higher frequencies, the excitation of the first waveguide mode can be seen.

considered, which rakes the form:

κyz = δωω2
0

ω2 − ω2
0

(9)

where δ is a constant.

2. Band structure

The dispersion equation for a medium consisted from Swiss
rolls in a square lattice and aligned with the z-axes can be
found considering Maxwell’s equations for a monochromatic
wave with frequency ω and wavevector k. For simplicity, we
assume that ky = 0, and since we know that the medium is
magnetically active and electrically inactive (for fields along
the roll), Maxwell’s equation can be rearranged in terms of B,
giving the dispersion equation [15]:

ω = c0

√
k2

x

εyμz
+ k2

z

εyμx
(10)

which is plotted in figure 2(a) (red line) for kx -(left) and
kz-propagation (right). For kx -propagation and frequencies
ω0 < ω < ωmp, the medium is opaque since μeff

z < 0 and
εeff

y > 0, introducing a stop band in the dispersion diagram.
Also, the band structure is not doubly degenerate for kx -
propagation as expected, since the (Ez, Hy) mode is forbidden
for ω < ωp. Furthermore, in figure 2(a) (right) the band
structure for kz propagation is plotted as well. Now the electric
and magnetic fields are in the x–y plane and therefore there
are two doubly degenerate transverse modes (since εx = εy

and μx = μy), that are also degenerate with the light line
(
√

εxμy = √
εyμx = 1) as can be obtained from (7) and (8).

The Swiss roll is a rather complex design to be modelled
for numerical calculations, since it is constructed from a thin
conducting sheet arranged in a spiral shape with a relatively big
radius and a small d [15, 16]. The fine details of the structure
demand a huge computational power and time for adequate
numerical accuracy. A way to go around this problem is to
calculate the band structure for a Swiss roll with less fine detail

(i.e. thicker conducting sheet and a smaller ratio of (R/d)).
Therefore, the band structure of a Swiss roll with dimensions
x = 0.05 mm, d = 0.1 mm, R = 2 mm, a = 5 mm and
N = 2 (where x is the thickness of the conducting sheet),
was numerically calculated using CST Microwave Studio1 and
plotted in figure 2(a) (black dots) with the analytical prediction
(red solid lines) of (10). The analytical and numerical results
show a significant agreement (i.e. ∼90%), even though some
of the assumptions taken for the analytical work are not valid
for the structure studied numerically (i.e. x → 0 and R � d).

Figure 2(b) shows the band structure at higher frequencies,
where the numerical calculations find equally-spaced flat
modes. By carefully studying the H -fields (shown in
figures 3(c) and (d)), these modes can be identified as trapped
modes between the conducting sheet, (i.e. inside the spiral gap)
which is acting as a spiral waveguide. The waveguide modes
are observed at frequencies:

ωn
g = c0

√
k2

mp +
(nπ

S

)2 + k2
z (11)

where n is a positive integer, kmp is the wavevector associated
with the‘magnetic plasma’ frequency in (5) and S is the length
of the spiral waveguide given by:

S =
∫ 2π(N−1)

0

√
ρ2 +

(
dρ

dθ

)2

dθ (12)

where ρ is the radius of the spiral waveguide and θ the
angle created between ρ and ρ = r0 (the inner radius of the
conducting sheet). As N increases, the length of the spiral
waveguide increases as well, leading to more dense waveguide
modes. Numerical results agree with (11) approximately ∼95–
96%, although the open boundary conditions were neglected
and our results are consistent with [17].

However, as seen in figure 2(b) for kx -propagation, the
waveguide mode couples strongly with the transverse mode
creating a band gap. It is expected that the stronger the

1 CST GmbH, Darmstadt, Germany.
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(a)

(b)

(c)

(d)

Figure 3. (a) A block-medium of periodicity a and gap between
blocks d . (b) The band gap created due to the coupling of the
waveguide and transverse modes is plotted, against the transmission
of a wave through the block-medium (i.e. T = 2d

d+a ). (c) The
magnetic field amplitude for the first waveguide mode and (d) the
second waveguide mode.

coupling between the two modes, the bigger the band gap
(
ω). A simple way to investigate this, is by considering the
transmission of a wave through a medium consisted of blocks
arranged in a square lattice of a and a gap between the blocks
d , as shown in figure 3(a). The impedance of such a medium
is given by Z = (d/a)Z0, where Z0 is the impedance of the
hosting medium (i.e. vacuum), and by considering impedance
matching at the interface, the transmission of the wave trapped
in the waveguide is given by:

T = 2Z

Z + Z0
= 2d

d + a
(13)


ω was measured numerically for various Swiss rolls, and
plotted in figure 3(b) against transmission (T = 2d

d+a ), and as
expected they have a linear relationship. Therefore, for more
fine dimensions of Swiss roll (i.e. smaller d) and where ω0

is in MHz frequencies, the coupling between the waveguide
and transverse modes is expected to be weak with a negligibly
small band gap.

3. S-parameter calculations and effective parameter
retrieval

For the Swiss roll metamaterial with band structure shown
in figure 2, the S-parameters were calculated for normal
incidence (i.e. kx -propagation) on a 5-unit-cell slab with
periodic boundary conditions in the y- and z-directions.
Using the analytical predictions for the electromagnetic
parameters in (3) and (8) and considering multiple scattering
for a homogeneous slab as described in [18], the analytical
prediction for the reflection coefficient is derived and plotted
in figure 4 (red solid line) together with numerical results
(blue dotted line). The agreement between the analytical and
numerical results is significant and is ∼92% for frequencies
up to 9 GHz, with a small difference on the value of ω0,
which is probably due to the approximations taken analytically
and are not valid for the structure simulated here. At
frequencies higher than 9 GHz the agreement breaks since the
wavelength becomes comparable to lattice constant, therefore
internal scattering within the unit cell takes place and the
homogenization theory is not valid. Also, the excitation of the
first waveguide mode can be seen in figure 4(a), and its value
is in an agreement with (11) at ∼98%.

Although the scattering parameters show important
information about the behaviour of a structure, it is usually
preferable to obtain the effective electromagnetic parameters,
which can be retrieved from the numerically calculated S-
parameters. The methods that can be used for isotropic media
are well documented in literature [19, 20], as well as for
anisotropic media in [21] (such as wires combined with split-
ring resonators). However, Chen et al [22] discuss ε and μ

retrieval, specifically for bianisotropic media, accounting for
the magnetoelectric coupling term. The S11 and S21-parameters
can be written as [19–22]:

S11 = r01[1 − exp(i2nk0ma)]
1 − |r01|2 exp(i2nk0ma)

(14)
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(a)

(b)

(c)

Figure 4. The analytic prediction (red solid line) and the numerical
result (blue dotted line) for the reflection coefficient (|R|) is plotted
for normal incidence on a five unit cell slab of a Swiss roll
metamaterial with dimensions N = 2, d = 0.1 mm, x = 0.05 mm,
R = 2 mm, a = 5 mm and band structure shown in figure 2. (a) For
a wide frequency range, where the excitation of the first waveguide
mode can be seen and (b) for ω → ωo. (c) The analytical prediction
of μz shown in (3) (red solid line) plotted with μz retrieved from
numerical results (blue dotted line).

S21 = (1 − |r01|2) exp(ink0ma)

1 − |r01|2 exp(i2nk0ma)
(15)

where r01 = (z − 1)/(z + 1) for vacuum impedance z0 =
1, z the medium impedance, n the refractive index, k0 the
wavevector of the incident wave, m the number of unit cells in
the slab, ma the width of the slab and by solving (14) and (15),

the impedance and refractive index are obtained [22]:

z =
√

DC ′′ − B ′

A′ − D2

4
+ i

D

2
(16)

where

A = 2S11 − S2
11 − 1 + S2

21 B = 2S11 + S2
11 + 1 − S2

21

C = S2
11 + S2

21 − 1 D = A′′B ′ − A′ B ′′

A′′C ′′ + A′C ′
(17)

and (·)′, (·)′′ denote the real and imaginary parts of the
operators respectively and:

n = − i

k0d
ln

(
r01 − S11

S21r01

)
. (18)

Therefore, the electric permittivity along the y-axis is given by:

εy = n − iκ

z
(19)

the magnetic permeability along the z-axis:

μz = z(n + iκ) (20)

and the magnetoelectric coupling by:

κ = 1

2i

(
μy

z
− εyz

)
. (21)

Therefore, by applying the above formulae for the
numerically calculated S-parameter shown in figure 4(b), the
magnetic permeability is retrieved and plotted (blue dotted
line) with the analytical prediction (red solid line) of (3)
in figure 4(c). They both have the same shape with a
terrific agreement (higher than 92%). This denotes that the
modelling of a Swiss roll metamaterial as a medium with
parameters given by (3) and (8) is a sufficiently accurate model.
Furthermore, the real and imaginary parts of the retrieved εeff

y ,
μeff

z , refractive index (n) and the impedance (z) are shown in
figure 5. It can be seen that both the impedance and refractive
index real parts are always positive for the frequencies where
the metamaterial is passive, and equal to zero for the stop band
frequencies, as expected. Also, their imaginary parts have a
sharp peak at resonance frequency.

Furthermore, the dependence of Re(μz) on the size of
the gap between the conducting sheets (d) is investigated
and is plotted in figure 6(a), where the expected behaviour
from (3) and (4) is obtained. However, the analytical prediction
depends on the validity of the assumption taken theoretically
that R � d , which is clearly confirmed in figure 6(a).
The disagreement is only on the value of ω0 and reduces
for higher values of (R/d). Also, the dependence of the
dielectric constant (εd) of the material inside the gap is plotted
in figure 6(b), where the behaviour is as expected from (4). The
disagreement between analytical and numerical results is due
to the value of d (i.e. d = 0.1 mm), where the contribution
of various εd on the accuracy is almost negligible. Finally,
in figure 6(c), the retrieved Re(μz) is plotted for various
thicknesses of the conducting sheet and for d = 0.1 mm,
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(a) (b)

(c) (d)

Figure 5. The retrieved effective electromagnetic parameters (z, n, ε, μ) from numerical S-parameter results of a Swiss roll metamaterial with
dimensions x = 0.05 mm, d = 0.1 mm, R = 2 mm, a = 5 mm and N = 2. The electromagnetic parameters are plotted for ω → ω0 and the
real parts are plotted with the red solid line and the imaginary part with the blue dotted line. (a) Impedance (Z ), (b) refractive index (n),
(c) electric permittivity (εy) across the Swiss roll and (d) the magnetic permeability (μz) along the roll.

εd = 1. As the conducting sheet becomes thinner, the
value of ω0 converges. However, the inaccuracy that a
thicker conducting sheet induces to numerical results is minor
(i.e. ∼3–5%), with respect to the extreme reduction on the
demand of computational power.

4. Swiss roll metamaterials at MHz frequencies

Swiss roll metamaterials are most commonly used at MHz
frequencies [15, 16, 23, 24], where they deploy an infinitely
thin conducting sheet and R � d . Despite the tremendous
modelling and computational problems of such a complicated
structure, the S-parameters were numerically calculated for
a Swiss roll metamaterial with dimensions N = 5, x =
5 μm, d = 25 μm, R = 2500 μm and a = 7000 μm.
For normal incidence on a three-unit-cell slab, the numerical
(blue dotted line) and analytical (red solid line) results for
|R| are plotted in figures 7(a) and (b), where the analytical
prediction was derived in the same way described in section 3.
The agreement between the analytical and simulation results
is ∼95% for frequencies around ω0. The S-parameters
were also calculated numerically for a broader frequency
range, where the excitation of the first and second waveguide
modes can be seen as sharp resonances (figure 7(a)). The
waveguide frequencies are also well predicted by (11), with
an agreement of ∼99%. The retrieved μeff

z is plotted with the

analytical prediction of (3), in figure 7(c). Both have the same
behaviour, with a slight shift on the value of ω0. Furthermore,
the electromagnetic parameters retrieved from numerical S-
parameter results are shown in figure 8. The real parts of the
impedance and refractive index are always positive, or zero
for frequencies where μz takes negative values. The main
difference from the GHz structure is that εy has a weaker
resonance, which agrees even more with the approximation
taken in (8) that εy is approximately constant.

Finally, using the retrieved εeff
y and μeff

z shown in figure 8
and the dispersion equations in (10), an estimate for the band
structure for a Swiss roll metamaterial with dimensions N = 5,
x = 5 μm, d = 25 μm, R = 2500 μm, a = 7000 μm
was derived and plotted in figure 9, since it was not possible
to derive it directly with numerical calculations. In figure 9(a),
the band structure is plotted for kx → 0 and in figure 9(b), the
first waveguide mode is shown as well. Also note that since
d is smaller, the waveguide mode coupling with the transverse
mode is considerably weaker, as expected.

The agreement between analytical and numerical results
for a frequency range from few MHz to tenths of GHz is
remarkable. An important advantage of Swiss rolls over other
artificially magnetic media (such as split-ring-resonators), is
the fact that their resonance frequency can be tune over a very
broad frequency range by simply changing d (figure 6(a)) or
εd (figure 6(c)) or R or a. Also, Swiss rolls have applications
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(a)

(b)

(c)

Figure 6. For Swiss rolls with radius R = 2 mm, lattice constant
a = 5 mm and N = 2 (a) analytical (solid lines) and retrieved
(dashed lines) Re(μz) is plotted against frequency for various values
of d (red: d = 0.025 mm, green: d = 0.05 mm, blue: d = 0.1 mm
and pink: d = 0.2 mm) filled with vacuum (i.e. εd = 1) and for
x = 0.05 mm (b) analytical (solid lines) and retrieved (dashed lines)
of Re(μz) against frequency for various values of εd (red: εd = 4,
green: εd = 2 and blue: εd = 1) for d = 0.1 mm and x = 0.05 mm.
(c) Analytical (solid lines) and retrieved (dashed lines) of Re(μz)
against frequency for various values of the conducting sheet’s
thickness x (d = 0.1 mm and εd = 1).

that other magnetic metamaterials cannot be used or are not as
efficient, like in magnetic resonance imaging (MRI) and some
antenna applications.

The agreement between theory and numerical results is
outstanding allowing us to move to the even more complicated
structure, the chiral Swiss roll, firstly introduced in [7]. As

(a)

(b)

(c)

Figure 7. The analytic prediction (red solid line) and the numerical
result (blue dotted line) for the reflection coefficient (|R|) is plotted
for normal incidence on a five unit cell slab of a Swiss roll
metamaterial with dimensions N = 5, x = 5 μm, d = 25 μm,
R = 2500 μm and a = 7000 μm. (a) For a wide frequency range,
where the excitation of the first two waveguide modes can be seen
and (b) for ω → ωo. (c) The analytical prediction of μz shown in (3)
(red solid line) plotted with μz retrieved from numerical results (blue
dotted line).

discussed in [7, 8], the magnetic resonant behaviour of chiral
Swiss rolls arises in the same way that it does for the non-
chiral structures. Also, due to chirality and magnetic resonant
behaviour, a negative band for one wave polarization is created.
The extreme chirality and the negative band make chiral Swiss
rolls suitable for various applications, such as polarization
rotation or selection antennas and antennas where linear-to-
circular wave transformation is necessary.

7
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(a) (b)

(c) (d)

Figure 8. The retrieved effective electromagnetic parameters (z, n, ε, μ) from numerical S-parameter results of a Swiss roll metamaterial with
dimensions N = 5, x = 5 μm, d = 25 μm, R = 2500 μm and a = 7000 μm. The electromagnetic parameters are plotted at ω → ω0 and the
real parts with the red solid line and the imaginary part with the blue dotted line: (a) impedance (Z ), (b) refractive index (n), (c) electric
permittivity across the rolls (εy) and (d) magnetic permeability along the rolls (μz).

(a) (b)

Figure 9. The band structure for kx -propagation in a Swiss roll metamaterial with dimensions N = 5, x = 5 μm, d = 25 μm, R = 2500 μm
and a = 7000 μm. (a) The band structure for ω → ω0 and (b) for a wide frequency range, where the first waveguide mode cam be seen.

5. Conclusions

An extensive numerical investigation of Swiss roll metama-
terials was carried out, that seemed to be neglected from
the community until now due to difficulties to numerically
model such a complicated structure. We investigated the
band structure, S-parameters and the effective electromagnetic
parameters for a Swiss roll metamaterials operating in GHz
frequencies, where an excellent agreement was found with
analytical work. Some additional resonances were also found,
that were identified as modes trapped inside the spiral gap

created from the conducting sheet. Finally, for Swiss rolls
with ω0 at lower frequencies (MHz frequencies) an even
higher agreement with analytical work was found and hence
it can be concluded that the analytical homogenization model
is exceptionally valid for Swiss rolls operating at a broad
frequency range.
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